Abstract

The initial-value problem for the Boltzmann-Lorentz equation for hard spheres at zero temperature is shown to be ill defined, the general solution depending on an arbitrary function. The uniqueness of the solution can be obtained by imposing the conservation of the number of particles (Carleman's type of condition does not suffice). The linearized Boltzmann equation for hard spheres is then analyzed, as it occurs in Enskog's method for calculating transport coefficients. It is demonstrated that in the case of viscosity and diffusion it is necessary to add supplementary conditions to obtain the uniqueness of the solution. The nonuniform character of Enskog's expansion and violation of positivity in the large velocity region are exhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call