Abstract
The formation of aggregates is commonly observed in soft matter such as globular protein solutions and colloidal suspensions. A lively debated issue concerns the possibility to discriminate between a generic intermediate-range order taking place in the fluid, as contrasted with the more specific presence of a clustered state. Recently, we have predicted by Monte Carlo simulations of a standard colloidal model — spherical particles interacting via a short-range attraction followed by a screened electrostatic repulsion at larger distances — the existence of a tiny structural change occurring in the pair structure. This change consists in a reversal of trend affecting a portion of the local density as the attractive strength increases, that is shown to take place precisely at the clustering threshold. Here, we address the same issue by refined thermodynamically self-consistent integral equation theories of the liquid state. We document how such theoretical schemes positively account for the observed phenomenology, highlighting their accuracy to finely describe the aggregation processes in model fluids with microscopic competing interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.