Abstract

Large Eddy Simulations have been performed on a Vertical Axis Hydrokinetic Turbine (VAHT) at various tip speed ratios. The turbine power coefficient and the flow through the turbine show good agreement with experimental data. To better understand the evolution of the VAHT power coefficient through the tip speed ratios the contribution of the VAHT main regions to the global power coefficient has been evaluated. At the optimal tip speed ratio (λ = 2) blade tip vortex and blade/arm connection drag generate losses and decrease the efficiency of the regions around the blade tip and blade/arm connection. The region around the blade tip is the most degraded. When the tip speed ratio decreases to λ = 1, deep dynamic stall with the presence of a Leading Edge Vortex is observed at early angular positions and leads to the power coefficient drop. The power coefficient drop around the blade tip and the blade/arm connection happens at higher angular position than on the middle part of the blade. For a tip speed ratio higher than optimal, the region around the blade/arm connection shows the highest decrease in efficiency. Despite its small height compared to the blade this region is responsible for about 36% of the VAHT power coefficient decrease at λ = 2.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.