Abstract

Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.