Abstract
Large eddy simulations (LES) of two-dimensional turbulent convection within the anelastic approximation are presented for Rayleigh number Ra = 109, Prandtl number Pr = 1 with free-slip boundary conditions. Various subgrid-scale (SGS) models are investigated such as a similarity model, a dynamic similarity model, a dynamic eddy-viscosity model, a hyperdiffusion model and a hybrid model (dynamic similarity hyperdiffusion model). To study the effects of density stratification on the models, we have also carried out simulations for a Boussinesq flow. The SGS models are compared to direct numerical simulation (DNS) data on the basis of kinetic energy and entropy variance spectra, mean entropy profiles, r.m.s. entropy profiles and r.m.s. kinetic energy density profiles. The results show that for the Boussinesq flow, all the SGS models agree fairly well with the high resolution DNS data. However, for the strongly density-stratified flow, only the hyperdiffusion and the hybrid model show good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.