Abstract

For high-pressure turbine blades, an efficient cooling of the trailing edge can be achieved by ejecting a film into the flow over a cutback on the pressure-side of the blade. Here, results of well-resolved Large-Eddy Simulations (LES) are reported that match an existing experimental setup. A low blowing ratio M = 0.5 was chosen and compared to results for an engine-typical value of 1.1. LES and experiments agreed reasonably well for mean and r.m.s. velocity profiles and adiabatic film-cooling effectiveness η aw. By imposing different flow conditions in the coolant channel, the LES data show that the flow regime of the coolant at ejection has a significant impact on the performance of the resulting cooling film for both blowing ratios. There are two surprising results: (1) a counter-intuitive behavior causing an also experimentally observed increase in η aw for a reduced blowing ratio. (2) For M = 0.5, a turbulent coolant sustains a higher cooling effectiveness farther downstream compared to a laminar coolant, whereas, for M = 1.1, the opposite is observed. It is shown that both phenomena are related to a change in type and strength of the dominant coherent structures that are formed behind the cutback lip and convected downstream along the trailing edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.