Abstract
Abstract Large Eddy simulations of lock-exchange gravity currents propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the currents and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the current reaches the mobile bed. Then, during the propagation of the current above the erodible section of the bed the contour plots of the entrained material are presented as well as the time evolution of the areas covered by the current and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the current where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the current. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbulent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the current shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the current and from the other side, the stability conditions provided by the current do not allow sediments to move into the ambient fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.