Abstract

Large Eddy Simulations of the realistic liquid fueled gas turbine combustor LOTAR operated at ONERA are performed for two fuels; a conventional JetA-1 and an alternative alcohol to jet fuel At-J, each modeled by a 3-component formulation. JetA-1 is composed of n-dodecane, methyl-cyclohexane and xylene each corresponding to the major hydrocarbon families found in real fuel. At-J is a synthetic drop in fuel composed of only branched chain alkanes, iso-octane, iso-dodecane and iso-hexadecane. Analytically Reduced Chemistry and multicomponent spray evaporation model coupled to the dynamic thickened flame turbulent combustion model are employed to understand the processes involved in turbulent spray flames in the LOTAR configuration. The objectives are to predict and understand the potential effects of staged vaporisation and consumption of the fuel components, and their impact on the spray flame structures. Simulations confirm the role of preferential evaporation in establishing and stabilising the reaction zone. JetA-1 evaporation zones extend deep into the rich burnt gasses resulting in a combustion regime with the possibility of droplet clusters burning individually. At-J which is more volatile, leads to complete combustion with the majority occurring due to the premixed lean reactions of the smaller pyrolysed components. The need to further include models capable of identifying and handling combustion regimes encountered in such spray flames is hence highlighted. This work is intended as a starting point for improving multicomponent spray modelling and requires additional experimental data for validation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call