Abstract

The combustion noise in aero-engines is known to originate from two different sources. First, the unsteady heat release in the combustion chamber generates the direct combustion noise. Second, hot and cold spots of air generated by the combustion process are convected and accelerated by the turbine stages and give rise to the so-called indirect combustion noise. The present work targets, by using a numerical approach, the generation mechanism of indirect combustion noise for a simplified geometry of a turbine stator passage. Periodic temperature fluctuations are imposed at the inlet, permitting to simulate hot and cold packets of air coming from the unsteady combustion. Three-dimensional Large Eddy Simulation (LES) calculations are conducted for transonic operating conditions to evaluate the blade acoustic response to the forced temperature perturbations at the inlet plane. Transonic conditions are characterized by trailing edge expansion waves and shocks. It is notably shown that their movement can be excited if disturbances with a particular frequency are injected in the domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.