Abstract

Abstract The large eddy simulations (LES) are performed to access the film cooling performance of cylindrical and reverse shaped hole for forward and reverse injection configurations. In the case of reverse/backward injection, the secondary flow is injected in such a way that its axial velocity component is in the direction opposite to mainstream flow. The study is carried out for a blowing ratio (M = 1), density ratio (DR = 2.42), and injection angle (α = 35 deg). Formation of counter-rotating vortex pair (CRVP) is one of the major issues in the film cooling. This study revealed that the CRVP found in the case of forward cylindrical hole which promotes coolant jet “liftoff” is completely mitigated in the case of the reverse shaped hole. The coolant coverage for reverse cylindrical and reverse shaped holes is uniform and higher. The reverse shaped hole shows promising results among investigated configurations. The lateral averaged film cooling effectiveness of reverse shaped hole is 1.16–1.42 times higher as compared to the forward shaped holes. The improvement in the lateral averaged film cooling effectiveness of reverse cylindrical hole (RCH) injection over forward cylindrical hole (FCH) injection is 1.33–2 times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call