Abstract

Large eddy simulations (LES) are carried out to investigate the flow around a vibrating cylinder in the subcritical Reynolds number regime at Re = 3900. Three reduced velocities, Ur = 3, 5, and 7, are chosen to investigate the wake structures in different branches of a vortex-induced vibration (VIV) lock-in. The instantaneous vortical structures are identified to show different coherent flow structures in the wake behind the vibrating cylinder for various branches of VIV lock-in. The combined effects of the frequency and amplitude of the oscillation on the flow pattern in the wake region, the hydrodynamic quantities of the cylinder, and the spanwise length scale of the energetic wake flow structures are discussed in detail. It is found that the typical spanwise lengths of the flow structures are 0.22D at Ur = 5 and 0.3D at Ur=[3,7] in the near-wake region and level out at 0.5D further downstream. Furthermore, multiscale proper orthogonal decomposition (mPOD) is used to analyze the dominant flow features in the wake region. With the increasing Ur, the total kinetic energy contribution of superharmonic modes increases and the contribution of subharmonic modes decreases. The dominant flow characteristics associated with the vortex shedding and their super harmonics, and the low-frequency modulation of the wake flow can be captured by the mPOD modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call