Abstract

Five sets of large-eddy simulations (LES) were performed to examine the characteristics of flows and pollutant dispersion in two-dimensional (2D) urban street canyons of unity building-height-to-street-width ratio in neutral, unstable, and stable thermal stratifications. The characteristic flows fall into the skimming flow regime for all the cases tested. The mean wind speed is increased and decreased, respectively, in unstable and stable conditions. Turbulence is enhanced in unstable conditions. Whereas, in stable conditions, the low-level temperature inversion weakens the recirculating flows forming another layer of stagnant air in the vicinity of the ground level. Unexpectedly, an increase in turbulence is found in the street canyon core in the slightly stable condition (Richardson number Rb=0.18). The turbulence promotion could be caused by the unique geometry of 2D street canyon in which the stable stratification slows down the primary recirculation. The rather stagnant flows in turn sharpen the roof-level vertical velocity gradient and deter the entrainment penetrating down to the ground level, leading to a substantial pollutant accumulation. While the pollutant tends to be well mixed in the street canyons in neutral and unstable conditions, a mildly improved pollutant removal in unstable conditions is observed because of the enhanced roof-level buoyancy-driven turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.