Abstract

The Mixed Scale Diffusivity Model, originally developed in the case of the differentially heated cavity, is applied to compute turbulent Rayleigh-Benard flow in an infinite fluid layer at Pr = 0.71 for a large range of Rayleigh numbers (6.3 × 105 – 2 × 1011). The effect of this SGS modelling, which adjusts locally the SGS diffusivity to the thermal scales of the flow and results in variable PrSGS like the dynamic approach, is emphasised by comparison with LES and TRANS literature data. A single scaling regime is found in a range of Rayleigh numbers 6.3 × 105 – 2 × 1010, whose properties include the Ra0.302 scaling law for the Nusselt number and for the thermal boundary layer thickness, in agreement with the experimental correlation of Niemela et al. (2000). The first indication of a transition towards a new regime appears above Ra = 1011.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.