Abstract
Turbulent flow in a 3-D blade passage of a Francis hydro turbine was simulated with the Large Eddy Simulation (LES) to investigate the spatial and temporal distributions of the turbulence when strongly distorted wakes in the inflow sweep over the passage. In a suitable consideration of the energy exchanging mechanism between the large and small scales in the complicated passage with a strong 3-D curvature, one-coefficient dynamic Sub-Grid-Scale (SGS) stress model was used in this article. The simulations show that the strong wakes in the inflow lead to a flow separation at the leading zone of the passage, and to form a primary vortex in the span-wise direction. The primary span-wise vortex evolves and splits into smaller vortex pairs due to the constraint of no-slip wall condition, which triggers losing stability of the flow in the passage. The computed pressures on the pressure and suction sides agree with the measured data for a working test turbine model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.