Abstract

AbstractLarge-eddy simulation (LES) of a three-dimensional, turbulent free surface flow past a stream restoration structure with arbitrarily complex geometries is presented. The three-dimensional, incompressible, spatially filtered Navier-Stokes and continuity equations are solved in generalized curvilinear coordinates. For the solution of mixed air-water flows, the curvilinear immersed boundary (CURVIB)–level set method developed previously is used and extended to carry out LES. Complex solid geometries are handled by the sharp-interface CURVIB method, and the subgrid scale stress terms arising from the spatial filtering of the Navier-Stokes equations are closed by the dynamic Smagorinsky model. To demonstrate the potential of the CURVIB–LES–level set model for simulating real-life, turbulent free surface flows involving arbitrarily complex geometries, LES is carried out for the flow past a complex rock structure that is fully submerged in water in a laboratory flume. The simulations show that the method...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.