Abstract

The explosion at the Buncefield oil depot in Hertfordshire, UK on 11 December 2005 produced the largest fire in Europe since the Second World War. The magnitude of the fire and the scale of the resulting plume thus present a stringent test of any mathematical model of buoyant plumes. A large-eddy simulation of the Boussinesq equations with suitable initial conditions is shown to reproduce the characteristics of the observed plume; both the height of the plume above the source and the direction of the downwind spread agree with the observations. This supports the use of the Boussinesq assumption, even for such a powerful plume as the one generated by the Buncefield fire. The presence of a realistic water vapour profile does not lead to significant additional latent heating of the plume, but does lead to a small increase in the final rise height of the plume due to the increased buoyancy provided by the water vapour. Our simulations include the interaction of radiation with the aerosol in the plume, and reproduce the observed optical thickness of the plume and the reduction of solar radiation reaching the ground. Far downwind of the source, solar radiation is shown to play a role in lofting the laterally spreading plume, but the manner in which it does so depends on the aerosol concentration. In the case of high aerosol concentration, the thickness of the plume increases; the incoming solar radiation is absorbed over such a small depth that only the top of the plume is lofted upwards and the level of maximum concentration remains almost unchanged relative to the case with no radiation. When the aerosol concentration is low, the whole plume is heated by the incoming solar radiation and the lofting is more coherent, with the result that the level of maximum concentration increases relative to the case with no radiation, but the thickness of the plume increases only slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.