Abstract

Large-eddy simulation of turbulent flow past a circular cylinder at sub- to super-critical Reynolds numbers is performed using a high-fidelity orthogonal curvilinear grid solver. Verification studies investigate the effects of grid resolution, aspect ratio and convection scheme. Monotonic convergence is achieved in grid convergence studies. Validation studies use all available experimental benchmark data. Although the grids are relatively large and fine enough for sufficiently resolved turbulence near the cylinder, the grid uncertainties are large indicating the need for even finer grids. Large aspect ratio is required for sub-critical Reynolds number cases, whereas small aspect ratio is sufficient for critical and super-critical Reynolds number cases. All the experimental trends were predicted with reasonable accuracy, in consideration the large facility bias, age of most of the data, and differences between experimental and computational setup in particular free stream turbulence and roughness. The largest errors were for under prediction of turbulence separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.