Abstract

Large-eddy simulation of turbulent flow and gas dispersion in a cubical canopy is used to investigate the effect of wind-direction fluctuations on gas dispersion. Square blocks are set at regular intervals on the bottom surface, with line sources placed within the first, second, third, fifth and seventh rows. Large-eddy simulation without wind-direction fluctuations produces a good prediction of the mean streamwise velocity component, and the standard deviations of the fluctuations in the streamwise and spanwise velocity components, obtained from a wind-tunnel experiment. Wind-direction fluctuations marginally affect the mean streamwise velocity component above the canopy in the first row, and do not significantly affect the component beyond the third row. The standard deviations of the fluctuations in the streamwise and spanwise velocity components above the canopy are also affected by wind-direction fluctuations, but within the canopy the components are less sensitive to the fluctuations beyond the third row. The spatially-averaged concentrations within the canyon with wind-direction fluctuations before the third row are marginally greater than concentrations without the fluctuations, but they are essentially identical beyond the fifth row. The low-frequency turbulent flow that passes through the canyon is generated with and without wind-direction fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.