Abstract
The paper describes the results of a comprehensive study of turbulent mixing, fuel spray dispersion and evaporation and combustion in a gas-turbine combustor geometry (the DLR Generic Single Sector Combustor) with the aid of Large Eddy Simulation (LES). An Eulerian description of the continuous phase is adopted and is coupled with a Lagrangian formulation of the dispersed phase. The sub-grid scale (sgs) probability density function approach in conjunction with the stochastic fields solution method is used to account for sgs turbulence-chemistry interactions. Stochastic models are used to represent the influence of sgs fluctuations on droplet dispersion and evaporation. Two different test cases are simulated involving reacting and non-reacting conditions. The simulations of the underlying flow field are satisfying in terms of mean statistics and the structure of the flame is captured accurately. Detailed spray simulations are also presented and compared with measurements where the fuel spray model is shown to reproduce the measured Sauter Mean Diameter (SMD) and the velocity of the droplets accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.