Abstract

The primary objective is to perform a large eddy simulation (LES) using shear improved Smagorinsky model (SISM) to resolve the large-scale structures, which are primarily responsible for shear layer oscillations and acoustic loads in a cavity. The unsteady, three-dimensional (3D), compressible Navier–Stokes (N–S) equations have been solved following AUSM+-up algorithm in the finite-volume formulation for subsonic and supersonic flows, where the cavity length-to-depth ratio was 3.5 and the Reynolds number based on cavity depth was 42,000. The present LES resolves the formation of shear layer, its rollup resulting in large-scale structures apart from shock–shear layer interactions, and evolution of acoustic waves. It further indicates that hydrodynamic instability, rather than the acoustic waves, is the cause of self-sustained oscillation for subsonic flow, whereas the compressive and acoustic waves dictate the cavity oscillation, and thus the sound pressure level for supersonic flow. The present LES agrees well with the experimental data and is found to be accurate enough in resolving the shear layer growth, compressive wave structures, and radiated acoustic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call