Abstract

Sharkskin-inspired riblets are widely adopted as a passive method for drag reduc?tion of flow over surfaces. In this research, large eddy simulation of turbulent flow over riblet-structured surface in a rectangular channel domain were performed at various Reynolds numbers, ranging from 4200-10000, to probe the resultant drag change, compared to smooth surface. The changes of mean streamwise velocity gradient in wall-normal direction at varied locations around riblet structures were also investigated to reduce mechanisms of streamlined riblet in reducing drag. The computational model is validated by comparing the simulation results against analytical and experimental data, for both smooth and riblet surfaces. Results in?dicating that the performance of the proposed streamlined riblet shows 7% drag reduction, as maximum, which is higher than the performance of L-shaped riblet with higher wetted surface area. The mean velocity profile analysis indicates that the streamlined riblet structures help to reduce longitudinal averaged velocity component rate in the normal to surface direction of near-wall region which leads to laminarization process as fluid-flows over riblet structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.