Abstract
Low swirl flame characteristics under external flow excitations are numerically investigated using large eddy simulations with a dynamically thickened flame combustion model. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid scale model is used for large eddy simulations. The excitations are imposed on inlet velocity profiles by a sinusoidal forcing function over a wide range of amplitudes and frequencies. Present investigation shows that although, the swirling motion of the low swirl flame is not intense enough to induce a recirculation zone in ensemble averaged results, external flow excitations increase the local swirl number upstream of the flame front. Such increase in the local swirl number is at maximum value when the low swirl flame is excited at the dominant frequency of the flow field, which in turn induces a vortex breakdown and hence a central recirculation zone. The strength and size of the time averaged recirculation zone depend on both the amplitude and frequency of the excitations. Moreover, phase-locked results indicate that external flow excitations induce local swirl fluctuations ahead of the flame front which alter the strength of the recirculation zone at different phase angles of the excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.