Abstract
Abstract Turbulence in a γ-mesoscale internal boundary layer (IBL) formed by a discontinuous change in surface roughness has been investigated using a large eddy simulation (LES) model to explicitly treat turbulent transport. Two cases are examined: a rough-to-smooth transition and a smooth-to-rough transition. IBL heights are identified using two absolute criteria, one in terms of horizontal stress variation and the other in terms of vertical stress variation, and the ratio of these two heights is found to be approximately constant with fetch. The IBL growth rate with fetch is essentially the same for both transitions, which is here interpreted as reflecting self-similarity of the IBL at relatively large fetches. Parameterization of IBL growth in terms of turbulent intensity is successful when the average turbulent intensity in the IBL is employed but not if the turbulent intensity at the IBL top is utilized. The effective eddy mixing length for longitudinal velocity does not experience strong variations...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.