Abstract

The large eddy simulation (LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine. Computational results are compared with those obtained by an RANS (RNG k-ɛ) model as well as with experimental data. The sensitivity of the LES results to mesh resolution is also discussed. The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS; and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES. Furthermore, the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result, and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model. Finally, it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call