Abstract

In this paper, details, and results of three-dimensional numerical modeling of flow around the semi-conical piers vertically mounted on the bed in a channel, are presented. For flow simulation, 3-D Navier–Stokes equations are solved numerically using the finite volume method and large eddy simulation. In this study, the semi-conical piers with different side slope angles ( $$\alpha$$ ) are tested, and the flow around them is compared with the cylindrical reference pier. Flow structures, vortex shedding behind piers, horseshoe vortices, instantaneous and time-averaged flow structures are presented and discussed. Numerical model results show that the semi-conical piers are eventuated remarkable reduction (up to 25%) in downward flow velocity in the upstream side of the piers, and much more reduction (up to 46%) in bed shear stresses in comparison with the cylindrical pier. Moreover, the model results showed some decrease in vortex shedding frequency for the semi-conical piers compared to the cylindrical pier. We report on numerical results of large eddy simulation of the flow around semi-conical piers with different side slopes. This research is significant because of the effect of these piers on the:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call