Abstract
In dual-fuel compression ignition engines, a high-reactivity fuel, such as diesel, is directly injected to the engine cylinder to ignite a mixture of low-reactivity fuel and air. This study targets improving the general understanding on the dual-fuel ignition phenomenon using zero-dimensional homogeneous reactor studies and three-dimensional large eddy simulation together with finite-rate chemistry. Using the large eddy simulation framework, n-dodecane liquid spray is injected into the lean ambient methane–air mixture at [Formula: see text]. The injection conditions have a close relevance to the Engine Combustion Network Spray A setup. Here, we assess the effect of two different chemical mechanisms on ignition characteristics: a skeletal mechanism with 54 species and 269 reaction steps (Yao mechanism) and a reduced mechanism with 96 species and 993 reaction steps (Polimi mechanism). Altogether three ambient temperatures are considered: 900, 950, and 1000 K. Longer ignition delay time is observed in three-dimensional large eddy simulation spray cases compared to zero-dimensional homogeneous reactors, due to the time needed for fuel mixing in three-dimensional large eddy simulation sprays. Although ignition is advanced with the higher ambient temperature using both chemical mechanisms, the ignition process is faster with the Polimi mechanism compared to the Yao mechanism. The reasons for differences in ignition timing with the two mechanisms are discussed using the zero-dimensional and three-dimensional large eddy simulation data. Finally, heat release modes are compared in three-dimensional large eddy simulation according to low- and high-temperature chemistry in dual-fuel combustion at different ambient temperatures. It is found that Yao mechanism overpredicts the first-stage ignition compared to Polimi mechanism, which leads to the delayed second-stage ignition in Yao cases compared to Polimi cases. However, the differences in dual-fuel ignition for Polimi and Yao mechanisms are relatively smaller at higher ambient temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.