Abstract

Computations are made for chevron and coflowing jet nozzles. The latter has a bypass ratio of 6:1. Also, unlike the chevron nozzle, the core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large-eddy resolving approach is used with circa 12x10(6) cell meshes. Because the codes being used tend toward being dissipative the subgrid scale model is abandoned, giving what can be termed numerical large-eddy simulation. To overcome near-wall modeling problems a hybrid numerical large-eddy simulation–Reynolds-averaged Navier–Stokes related method is used. For y 60 a Reynolds-averaged Navier–Stokes model is used. Blending between the two regions makes use of the differential Hamilton–Jabobi equation, an extension of the eikonal equation. For both nozzles, results show encouraging agreement with measurements of other workers. The eikonal equation is also used for ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call