Abstract

In this work, large-eddy simulation is used to study the flow around a circular cylinder undergoing streamwise sinusoidal oscillations. This benchmark case is a first step toward studying engineering applications related to flow-induced vibrations. Both the flow physics, which correlate the flow development with the time varying loading of the cylinder at two different oscillation frequencies, as well as a validation of the fluid structure interaction methodology through comparison with experimental data for the same configuration are described. With the methodology used, large-eddy simulation based on a finite volume method capable of handling moving meshes gives force predictions that generally agree well with experimentally measured data, both with respect to the overall flow development as with force magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.