Abstract

A combustion device operating in Moderate or Intense Low-oxygen Dilution (MILD) condition is numerically simulated. The burner consists of a cylindrical hot co-flow generator with an injector installed on the central axis. The hot co-flow is obtained by the lean combustion of Dutch Natural Gas (DNG). The spray is injected through an industrial pressure swirl atomiser using liquid ethanol as fuel. MILD combustion consists in burning the fuel in a high temperature environment so that the temperature gradients are limited and the production of pollutants such as NOx reduced. MILD combustion has been investigated for furnace applications and for various gaseous fuels, recently it has also been explored for spray combustion. The simulation is performed in the context of Large Eddy Simulation (LES) and the transported pdf equation for the scalars is solved using the stochastic fields approach. The validation of the results is based on the comparison with experimental data. The characteristics of the injector are obtained a posteriori by the use of the measurements at downstream location. The simulation correctly reproduces the velocity profiles of the particles within their size classes and the integral particle size distribution which is represented by the Sauter Mean Diameter (SMD). The gas phase temperature and velocity are also in good agreement with the measurements, however, some discrepancies are observed, presumably because of the lack of modelling of primary atomisation. The model employed appears to reliably reproduce the behaviour of the spray combustion system under MILD conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.