Abstract

A general model for multi-modal turbulent combustion is achievable with two-dimensional manifold equations that use the mixture fraction and a generalized progress variable as coordinates. Information about the underlying mode of combustion is encoded in three scalar dissipation rates that appear as parameters in the two-dimensional equations. In this work, Large Eddy Simulation (LES) of a multi-modal turbulent lifted hydrogen jet flame in a vitiated coflow is performed using this new turbulent combustion model, leveraging both convolution-on-the-fly and In-Situ Adaptive Tabulation for computational tractability. The simulation predicts a lifted flame consistent with observations from past experiments. The feasibility of such a model implemented in LES is examined, and the cost per timestep is found to be comparable to conventional one-dimensional manifold-based models describing one asymptotic mode of combustion. Additionally, the model provides clear interpretability, allowing for combustion mode analysis to be performed with ease by evaluating the scalar dissipation rates and generalized progress variable source term. This analysis is used to show that the flame is stabilized by autoignition and has a trailing nonpremixed flame. Furthermore, transport of progress variable from the most reactive mixture fraction towards richer mixtures at the centerline is found to be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.