Abstract

The objective of this paper is the simulation of a turbulent flame by employing the Rate-Controlled Constrained Equilibrium (RCCE) approach for the chemistry reduction, and Large-Eddy Simulation (LES) coupled with Conditional Moment Closure (CMC) for the turbulence-chemistry interaction modelling. RCCE is a systematic method for mechanism reduction, based on the concept that certain species characterized by faster time scales are in a constrained equilibrium state, determined by the concentration of the species controlled by the chemical kinetics. A general system of differential equations can be derived, independent on the selection of the fast and slow species (which appears as a parameter). The RCCE system is used to compute the conditional source term in the CMC equation. The flame simulated here is a methane flame issuing into a vitiated co-flow formed by hot combustion products, the “Cabra” flame, which is controlled by auto-ignition and is therefore sensitive to the chemical mechanism. The results show an influence of the chosen chemistry in the ignition length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.