Abstract

Transient jet ignition of a homogeneous methane air mixture in a turbulent jet ignition system is studied computationally using a large eddy simulation turbulence model. The jet discharges from a prechamber into a main combustion chamber via one or more orifice(s) and provides a distributed ignition source in turbulent jet ignition. The effect of orifice size and stoichiometry is studied numerically using the Converge computational fluid dynamics code. A reduced kinetic mechanism is used for combustion along with a Smagorinsky sub-model for turbulence modeling. The computed pressure traces are compared with experimental measurements through rapid compression machine tests. Computational fluid dynamics results are in acceptable agreement with the experimental data during compression and the early stage of combustion; however, an over-prediction of peak pressure was reported. Peak pressure error is in the range of 0.1%–4% for Reynolds-averaged Navier–Stokes simulation estimation compared to the experimental measurements. This error is a function of mixture stoichiometry and unburned gas temperature. The error calculation showed that with the large eddy simulation model, 1% and 12% improvements in peak pressure and burn rate estimations, respectively, were achieved compared to Reynolds-averaged Navier–Stokes results. The reduced large eddy simulation error relative to the Reynolds-averaged Navier–Stokes simulations were considered to be in the acceptable range; however, further improvements could be achieved through validation and testing of additional turbulence models. In addition, computational fluid dynamics temperature contours for various nozzle orifices and air–fuel ratios are compared to achieve deeper insight into the turbulent jet ignition combustion process in the rapid compression machine combustion cylinder. The numerical iso-surface temperature contours were obtained which enabled three-dimensional views of the flame propagation, the jet discharge, ignition and extinction events. The heat release process and regeneration of mid-range temperature iso-surfaces (1200 K) were not visible through the experimental images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.