Abstract

AbstractThis paper aims to demonstrate the viability of using the large eddy simulation (LES) CFD methodology to model a representative, complete STOVL aircraft geometry at touch down. The flowfield beneath such a jet-borne vertical landing aircraft is inherently unsteady. Hence, it is argued in the present work that the LES technique is the most suitable tool to predict both the mean flow and unsteady fluctuations, and, with further development and validation testing, this approach could be a replacement, and certainly a complementary aid, to expensive rig programmes. The numerical method uses a compressible solver on a mixed element unstructured mesh. Examination of instantaneous flowfield predictions from these LES calculations indicate close similarity with many flow features identified from ground effect flow visualisations, which are well known to be difficult to model using RANS-based CFD. Whilst significant further work needs to be carried out, these calculations show that LES could be a practical tool to model, for example, Hot Gas Ingestion for the Joint Strike Fighter aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.