Abstract
Interactions of a cavity flameholder with an upstream injected jet in a Ma 2.52 supersonic flow are investigated numerically. A hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large Eddy Simulation) method acting as wall-modeled LES is adopted, for which the recycling/rescaling method is introduced to treat the unsteady turbulent inflow. Patterns of the fluid entrainment into the cavity and escape from the cavity are identified using a scalar-tracing method. It is found that the jet–cavity interactions remarkably enhanced the mass exchange between the fluids in and out of the cavity, resulting in reduced residence time of the cavity fluids. Increasing the distance between the fuel injection and the cavity leading edge tends to attenuate the jet–cavity interactions, leading to weaker mass exchange. Raising the injection pressure appears to enhance the jet–cavity interactions, resulting in a shorter residence time of the cavity fluids. Moreover, the mass decay processes for the fuel and air within the cavity are basically the same while the entrainment processes for the fuel and air into the cavity seem quite different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.