Abstract

Physical features of turbulence and vortex-flame interaction in engines are investigated by performing large eddy simulation and direct numerical simulation of compressible flows. A BI-SCALES (Boundary-Inner Smoothly Coupled, Alternating multi-Level Equations System) is proposed, which is a mathematical formulation of the system of governing equations suitable for computations of compressible flows. A numerical method based on the proposed formulation is developed. Using the method, the transition to turbulence in the compression process and the cyclic variations are examined. Then, the vortex-flame interaction is studied, mainly on the relation between the flame structure and the Kalvoritz- and turbulent Reynolds number effect. Finally, the large wrinkle simulation (LWS) of engine combusting flow is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.