Abstract

Abstract This paper presents the control system design and tracking performance for a large range single-axis nanopositioning system that is based on a moving magnet actuator and a flexure bearing. While the physical system is designed to be free of friction and backlash, the nonlinearities in the electromagnetic actuator as well as the harmonic distortion in the drive amplifier degrade the tracking performance for dynamic commands. It is shown that linear feedback and feedforward proves to be inadequate to overcome these nonlinearities. This is due to the low open-loop bandwidth of the physical system, which limits the achievable closed-loop bandwidth given actuator saturation concerns. For periodic commands, like those used in scanning applications, the component of the tracking error due to the system nonlinearities exhibits a deterministic pattern and repeats every period. Therefore, a phase lead type iterative learning controller (ILC) is designed and implemented in conjunction with linear feedback and feedforward to reduce this periodic tracking error by more than two orders of magnitude. Experimental results demonstrate the effectiveness of ILC in achieving 10 nm RMS tracking error over 8 mm motion range in response to a 2 Hz band-limited triangular command. This corresponds to a dynamic range of more than 10 5 for speeds up to 32 mm/s, one of the highest reported in the literature so far, for a cost-effective desktop-sized single-axis motion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.