Abstract

AbstractThough the partitioning of shortwave radiation (K↓) at the surface into its diffuse (K↓,d) and direct beam (K↓,b) components is relevant for, among other things, the terrestrial energy and carbon budgets, there is a dearth of large-scale comparisons of this partitioning across reanalysis and satellite-derived products. Here we evaluate K↓, K↓,d, and K↓,b, as well as the diffuse fraction (kd) of solar radiation in four current-generation reanalysis (NOAA-CIRES-DOE, NCEP/NCAR, MERRA-2, ERA5) datasets and one satellite-derived product (CERES) using ≈1400 site years of observations. Although the systematic positive biases in K↓ is consistent with previous studies, the biases in gridded K↓,d and K↓,b vary in direction and magnitude, both annually and across seasons. The inter-model variability in cloud cover strongly explains the biases in both K↓,d and K↓,b. Over Europe and China, the long-term (10-year plus) trends in K↓,d in the gridded products are noticeably differ from corresponding observations and the grid-averaged 35-year trends show an order of magnitude variability. In the MERRA-2 reanalysis, which includes both clouds and assimilated aerosols, the reduction in both clouds and aerosols reinforce each other to establish brightening trends over Europe, while the effect of increasing aerosols overwhelm the effect of decreasing cloud cover over China. The inter-model variability in kd seen here (0.27 to 0.50 from CERES to MERRA-2) suggests substantial differences in shortwave parameterization schemes and their inputs in climate models and can contribute to inter-model variability in coupled simulations. Based on these results, we call for systematic evaluations of K↓,d and K↓,b in CMIP6 models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call