Abstract

Sympatric bats engage in various strategies for dietary niche partitioning such as different microhabitat use; however, no previous study has yet looked at potential dietary niche partitioning in mammals foraging in a space void of any physical structure. Here, we used stable isotope ratios of carbon and nitrogen to investigate if three insectivorous bats of central Thailand, Chaerephon plicatus, Taphozous melanopogon and T. theobaldi, partition food resources when foraging in the open space of the lower boundaries of the troposphere. We quantified the isotopic dietary niches of these species and compared niche dimensions within the guild of openspace foraging bats and between this guild and the edge-foraging bat Hipposideros larvatus. Our results showed that stable isotope ratios of bats differed between wet and dry seasons. Consistently, open-space foraging bat species shared a similar isotopic composition in both seasons, which contrasted that of the edge-space foraging H. larvatus. Isotopic niche dimensions of open-space foraging bats were smaller than those of the edge-space foraging bat. Based on isotopic data, we inferred that open-space foraging bats foraged mostly on dipterans which may fly or drift to higher altitudes where these bats hunt. In contrast, H. larvatus included mostly beetles from C4food webs in their diet, highlighting that this species is an important predator of pest insects of C4crops, namely cane sugar and corn. Our study emphasizes that the unstructured aerosphere in which open-space foraging bats hunt insects may promote a large overlap in the diet of these species. We conclude that mechanisms other than trophic niche differentiation, such as the motion capacity of bat species, both in terms of covered distances and accessed altitudes may facilitate the coexistence of high-altitude foraging bats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call