Abstract
We report a method to synthesize tubular graphene structures by chemical vapor deposition (CVD) on Ni nanowire templates, using ethylene as a precursor at growth temperature of around 750 °C. Unlike carbon nanotubes that are synthesized via conventional routes, the number of graphene layers is determined by the growth time and is independent of the tube diameter and tube length, which follow those of the nanowire template. This allows us to realize large-diameter tubes with shells comprising a few or many layers of graphene as desired. Thin graphene layers are observed to be highly crystalline, and of uniform thickness throughout the length of the nanowire. Raman analysis shows the presence of a small level of defects typical of CVD-grown graphene. The metallic core could be removed by chemical etching to result in a collapsed tube. Backgated field-effect transistor measurements were conducted on the collapsed graphene tube. This approach to the realization of tubular graphene offers new opportunities for graphene-based nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.