Abstract

The thrust of this paper is to develop a new theoretical framework, based on large deviations theory, for the problem of optimal asset allocation in large portfolios. This problem is, apart from being theoretically interesting, also of practical relevance; examples include, inter alia, hedge funds where optimal strategies involve a large number of assets. In particular, we also prove the upper bound of the shortfall probability ( or the risk bound) for the case where there is a finite number of assets. In the two-assets scenario, the effects of two types of asymmetries (i.e., asymmetry in the portfolio return distribution and asymmetric dependence among assets) on optimal portfolios and risk bounds are investigated. We calibrate our method with international equity data. In sum, both a theoretical analysis of the method and an empirical application indicate the feasibility and the significance of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.