Abstract
For any fixed simple graph H=(V,E) and any fixed u>0, we establish the leading order of the exponential rate function for the probability that the number of copies of H in the Erdős–Rényi graph G(n,p) exceeds its expectation by a factor 1+u, assuming n−κ(H)≪p≪1, with κ(H)=1/(2Δ), where Δ≥1 is the maximum degree of H. This improves on a previous result of Chatterjee and the second author, who obtained κ(H)=c/(Δ|E|) for a constant c>0. Moreover, for the case of cycle counts we can take κ as large as 1/2. We additionally obtain the sharp upper tail for Schatten norms of the adjacency matrix, as well as the sharp lower tail for counts of graphs for which Sidorenko's conjecture holds. As a key step, we establish quantitative versions of Szemerédi's regularity lemma and the counting lemma, suitable for the analysis of random graphs in the large deviations regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.