Abstract

AbstractIn this paper we show how to apply classical probabilistic tools for partial sums $\sum _{j=0}^{n-1}\varphi \circ \tau ^j$ generated by a skew product $\tau $ , built over a sufficiently well-mixing base map and a random expanding dynamical system. Under certain regularity assumptions on the observable $\varphi $ , we obtain a central limit theorem (CLT) with rates, a functional CLT, an almost sure invariance principle (ASIP), a moderate-deviations principle, several exponential concentration inequalities and Rosenthal-type moment estimates for skew products with $\alpha $ -, $\phi $ - or $\psi $ -mixing base maps and expanding-on-average random fiber maps. All of the results are new even in the uniformly expanding case. The main novelty here (in contrast to [2]) is that the random maps are not independent, they do not preserve the same measure and the observable $\varphi $ depends also on the base space. For stretched exponentially ${\alpha }$ -mixing base maps our proofs are based on multiple correlation estimates, which make the classical method of cumulants applicable. For $\phi $ - or $\psi $ -mixing base maps, we obtain an ASIP and maximal and concentration inequalities by establishing an $L^\infty $ convergence of the iterates ${\mathcal K}^{\,n}$ of a certain transfer operator ${\mathcal K}$ with respect to a certain sub- ${\sigma }$ -algebra, which yields an appropriate (reverse) martingale-coboundary decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.