Abstract

We discuss large deviation properties of continuous-time random walks (CTRWs) and present a general expression for the large deviation rate in CTRWs in terms of the corresponding rates for the distributions of steps' lengths and waiting times. In the case of Gaussian distribution of steps' lengths the general expression reduces to a sequence of two Legendre transformations applied to the cumulant generating function of waiting times. The discussion of several examples (Bernoulli and Gaussian random walks with exponentially distributed waiting times, Gaussian random walks with one-sided Lévy and Pareto-distributed waiting times) reveals interesting general properties of such large deviations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.