Abstract
We prove a Large Deviation Principle for the family of solutions of Volterra equations in the plane obtained by perturbation of the driving white noise. One of the motivations for the study of such class of equations is provided by non-linear hyperbolic stochastic partial differential equations appearing in the construction of some path-valued processes on manifolds. The proof uses the method developped by Azencott for diffusion processes. The main ingredients are exponential inequalities for different classes of two-parameter stochastic integrals; these integrals are related to the representation of the stochastic term in the differential equation as a representable semimatringale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.