Abstract

A large deviation principle is established for a two-scale stochastic system in which the slow component is a continuous process given by a small noise finite dimensional Ito stochastic differential equation, and the fast component is a finite state pure jump process. Previous works have considered settings where the coupling between the components is weak in a certain sense. In the current work we study a fully coupled system in which the drift and diffusion coefficient of the slow component and the jump intensity function and jump distribution of the fast process depend on the states of both components. In addition, the diffusion can be degenerate. Our proofs use certain stochastic control representations for expectations of exponential functionals of finite dimensional Brownian motions and Poisson random measures together with weak convergence arguments. A key challenge is in the proof of the large deviation lower bound where, due to the interplay between the degeneracy of the diffusion and the full dependence of the coefficients on the two components, the associated local rate function has poor regularity properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.