Abstract
We consider a class of slow–fast processes on a connected complete Riemannian manifold M. The limiting dynamics as the scale separation goes to ∞ is governed by the averaging principle. Around this limit, we prove large deviation principles with an action-integral rate function for the slow process by nonlinear semigroup methods together with Hamilton–Jacobi–Bellman (HJB) equation techniques. Our main innovation is solving the comparison principle for viscosity solutions for the HJB equation on M and the construction of a variational viscosity solution for the non-smooth Hamiltonian, which lies at the heart of deriving the action integral representation for the rate function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.