Abstract
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville process behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of our large deviation estimates, we derive laws of iterated logarithm for the corresponding local times. The key points of our methods: (1) logarithmic superadditivity of a normalized sequence of moments of exponentially randomized local time of a fractional Brownian motion; (2) logarithmic subadditivity of a normalized sequence of moments of exponentially randomized intersection local time of Riemann-Liouville processes; (3) comparison of local and intersection local times based on embedding of a part of a fractional Brownian motion into the reproducing kernel Hilbert space of the Riemann-Liouville process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.