Abstract
We consider a model of stochastic evolution under general noisy best response protocols, allowing the probabilities of suboptimal choices to depend on their payoff consequences. Our analysis focuses on behavior in the small noise double limit: we first take the noise level in agents’ decisions to zero, and then take the population size to infinity. We show that in this double limit, escape from and transitions between equilibria can be described in terms of solutions to continuous optimal control problems. These are used in turn to characterize the asymptotics of the the stationary distribution, and so to determine the stochastically stable states. The control problems are tractable in certain interesting cases, allowing analytical descriptions of the escape dynamics and long run behavior of the stochastic evolutionary process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.