Abstract
In this paper we develop the large deviations principle and a rigorous mathematical framework for asymptotically efficient importance sampling schemes for general, fully dependent systems of stochastic differential equations of slow and fast motion with small noise in the slow component. We assume periodicity with respect to the fast component. Depending on the interaction of the fast scale with the smallness of the noise, we get different behavior. We examine how one range of interaction differs from the other one both for the large deviations and for the importance sampling. We use the large deviations results to identify asymptotically optimal importance sampling schemes in each case. Standard Monte Carlo schemes perform poorly in the small noise limit. In the presence of multiscale aspects one faces additional difficulties and straightforward adaptation of importance sampling schemes for standard small noise diffusions will not produce efficient schemes. It turns out that one has to consider the so called cell problem from the homogenization theory for Hamilton-Jacobi-Bellman equations in order to guarantee asymptotic optimality. We use stochastic control arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.