Abstract
We study fractional stochastic volatility models in which the volatility process is a positive continuous function $\sigma$ of a continuous Gaussian process $\widehat{B}$. Forde and Zhang established a large deviation principle for the log-price process in such a model under the assumptions that the function $\sigma$ is globally Hölder continuous and the process $\widehat{B}$ is fractional Brownian motion. In the present paper, we prove a similar small-noise large deviation principle under weaker restrictions on $\sigma$ and $\widehat{B}$. We assume that $\sigma$ satisfies a mild local regularity condition, while the process $\widehat{B}$ is a Volterra type Gaussian process. Under an additional assumption of the self-similarity of the process $\widehat{B}$, we derive a large deviation principle in the small-time regime. As an application, we obtain asymptotic formulas for binary options, call and put pricing functions, and the implied volatility in certain mixed regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.